13 de mayo de 2017 10:08 AM
Imprimir

Inteligencia artificial para el agro

Las nuevas herramientas ayudan a la producción.

Soy integrante de b2b-agri junto con Julio Cantagallo. Podemos observar en los últimos años cómo el agro ha ido avanzando en la implantación de nuevas tecnologías de forma explosiva. Como resultado se están logrando rendimientos y capacidades de producción muy superiores a las que se podían esperar hace no muchos años con los costos de producción contenidos. Los mayores avances se deben a la adopción de maquinaria muy eficiente y a la irrupción de material genético de gran productividad y alta adopción de eventos biotecnológicos.

En el sector agrario el uso de sistemas de inteligencia artificial y modelos de simulación no ha avanzado mucho debido a la dificultad de conseguir datos y a la complejidad de los sistemas agronómicos, pero esto está cambiando con el desarrollo de sensores adaptados a las condiciones del campo y al desarrollo de modelos de simulación numéricos complejos.

Desde b2b-agri, y gracias a nuestra alianza estratégica con la compañía ec2ce, estamos introduciendo en la Argentina y en varios países de Sudamérica una tecnología que permite optimizar la toma de decisiones en el campo y en la comercialización posterior de sus productos.

Pablo Ogallar
Pablo Ogallar.

Son desarrollos para modelar la productividad sectorial de “commodities” agrícolas como el maíz (actualmente estamos proveyendo predicciones de producción en los Estados Unidos a nivel estado), la soja (producción en los Estados Unidos), el aceite de palma (producción y precio en Malasia), el aceite de oliva (producción en España), etcétera. Igualmente, trabajamos con comercializadoras de horticultura y fruta que necesitan anticipar la recepción de producto de forma que pueden definir sus estrategias comerciales ante los “retailers” con un elevado grado de seguridad.

Como ejemplo, ec2ce está operando con compañías que saben con hasta 9 meses de antelación las producciones previstas de maíz, de soja, los precios de aceite de palma con 8 semanas de antelación, la de aceite de oliva con 8 meses de adelanto y todo ello con una precisión elevadísima, y dichas previsiones se revisan de forma periódica para incorporar nueva información.

Tenemos clientes que saben a priori el rendimiento de sus olivares y el momento óptimo de recolección, y productores de invernaderos definiendo sus planes de fertirrigación con sistemas de inteligencia artificial.

Share on FacebookShare on Google+Tweet about this on TwitterShare on LinkedInEmail this to someone
Fuente: La Nacion

Publicidad